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Introduction

The Banach-Tarski Paradox: A solid ball in 3-dimensional
space can be split into a finite number of non-overlapping pieces,
which can then be put back together in a different way to yield two
identical copies of the original ball.

1Source: Wikipedia
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Banach-Tarski in Pop Culture

Futurama June 23, 2011

Rachel Levanger Imagining the Banach-Tarski Paradox



Banach-Tarski in Pop Culture

XKCD Oct 11, 2010
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Definition

Paradoxical

Let X be an infinite set and suppose E ⊆ X . We say that E is
paradoxical if for some positive integers n, m there are pairwise
disjoint subsets A1, ...,An,B1, ...,Bm of E and corresponding
permutations g1, ..., gn, h1, ..., hm of X such that⋃

gi (Ai ) = E and
⋃

hk(Bk) = E .

2The formal definition typically given involves that of a group G acting on a
set X . To simplify the presentation for an audience of undergraduates, the
definition was modified to remove references to group actions, and instead uses
sets and permutations. It can be shown that if X is infinite, then it is
paradoxical under the group of all permutations.
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Example: Rotations by arccos 1
3 ≈ 70.53◦

σ±1 =
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Rotation by arccos 1

3
around z-axis

τ±1 =
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
Rotation by arccos 1

3
around x-axis
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Example: Rotations by arccos 1
3 ≈ 70.53◦

Why rotate by arccos 1
3?

Angle is an irrational multiple of π

Iterations of rotations take points to unique images

Moreover, products of rotations take points to unique images

3Fixed points of rotations are addressed later on in the presentation.
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A paradoxical set of rotations

F is Paradoxical with Respect to Itself

The set F of finite (reduced) products of the matrices
σ, σ−1, τ , and τ−1 is paradoxical.

σ±1 =

 1
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σ

Examples:
σσ−1 = id
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τττττττττττττττττττ
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A paradoxical set of rotations

P(σ)

σ

P(σ−1) P(τ)

τ
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στ ...
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σ−1τ−1 τσ−1

τ
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σ
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P(σ) ∪ σP(σ−1) = F = P(τ) ∪ τP(τ−1)

Sort products based
on left-most rotation
in product

Divide into two
groups

Apply σ and τ
rotations

Adjacent rotations
cancel to yield
paradoxical
decomposition
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P(σ) σP(σ−1) P(τ) τP(τ−1)

σ σσ−1 τ ττ−1

a a a a

σσ σσ−1σ−1 ττ ττ−1τ−1

σσ... σσ−1σ−1... ττ ... ττ−1τ−1...

a a a a

στ σσ−1τ τσ ττ−1σ
στ ... σσ−1τ ... τσ... ττ−1σ...

a a a a

στ−1 σσ−1τ−1 τσ−1 ττ−1σ−1

στ−1... σσ−1τ−1... τσ−1... ττ−1σ−1...

P(σ) ∪ σP(σ−1) = F = P(τ) ∪ τP(τ−1)

Sort products based
on left-most rotation
in product

Divide into two
groups

Apply σ and τ
rotations

Adjacent rotations
cancel to yield
paradoxical
decomposition

Rachel Levanger Imagining the Banach-Tarski Paradox



A paradoxical set of rotations
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The Hausdorff Paradox

Felix Hausdorff

In 1914, Felix Hausdorff finds a way to
leverage the paradox on F to a subset
of the hollow sphere, S2.

space

He originally used a different set of
rotations, but the idea is similar to what
is presented here.
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The Hausdorff Paradox

S2\D is Paradoxical (Felix Hausdorff, 1914)

Let D be the set of all fixed points of the hollow sphere S2 under
the rotations in F . The set S2\D is paradoxical using four pieces.

Fixed points of a rotation: two points of intersection
between the axis of rotation and the sphere
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The Hausdorff Paradox

First we look at the image of a single point under rotations in F ,
the finite reduced products of σ, σ−1, τ , and τ−1:
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The Hausdorff Paradox

How do we create a correspondence between a partition of
S2\D and F ?

Each image set is countable, since F is

An uncountable number of these image sets partition S2\D
Using the Axiom of Choice, we create a choice set by choosing
one representative from each image set in the partition

The choice set is uncountable and, when rotated by elements
of F , creates the correspondence we’re looking for
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The Hausdorff Paradox
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The Hausdorff Paradox
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The Hausdorff Paradox
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The Hausdorff Paradox
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Piecewise Congruence

Piecewise congruent, A ∼ B

Suppose A,B ⊆ X . Then A and B are piecewise congruent if for
some positive integer n, there exists a

partition of A, {Ai : 1 ≤ i ≤ n}
partition of B, {Bi : 1 ≤ i ≤ n}
set of rigid motions g1, ..., gn of X

such that gi (Ai ) = Bi for each 1 ≤ i ≤ n. We write that A ∼ B if
such a correspondence exists.

Piecewise congruence preserves paradoxes

If A ∼ B and A is paradoxical, then B is paradoxical.

4This definition is also referred to as equidecomposable.
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“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space
Create partition set:

1 Isolate the “hole”

2 Repeatedly apply rotation
φ = arccos 1

3 to the hole

3 Look only at the image set
of the hole, (1, 0)

4 Apply inverse rotation, φ−1
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“Filling in a Point”

S1 ∼ S1\(1, 0)

The unit circle S1 is piecewise congruent to S1\(1, 0).

space

Piecewise congruent partition:

The image set, (1, 0)

The rest of the points,
S1\(1, 0)
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“Filling in the set D”

S2 ∼ S2\D
The unit sphere S2 is piecewise congruent to S2\D.

space
Create partition set:

1 Isolate the “holes,” D

2 Repeatedly apply rotation φ
to the holes

3 Look only at the image set
of the hole, D

4 Apply inverse rotation, φ−1
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“Filling in the set D”

S2 ∼ S2\D
The unit sphere S2 is piecewise congruent to S2\D.

space

Piecewise congruent partition:

The image set, D

The rest of the points, S2\D
space
By the Hausdorff Paradox,
and since piecewise congruence
preserves paradoxical
decompositions,
S2 is Paradoxical!
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The Banach-Tarski Paradox

Stefan Banach Alfred Tarski
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The Banach-Tarski Paradox

B\(0, 0, 0) is paradoxical

The unit ball minus the origin B\(0, 0, 0) is paradoxical with
respect to rotations in R3.

Begin with the Hausdorff Paradox decomposition

Use radial correspondence between S2 and B\(0, 0, 0)

Apply the same rotations needed to create paradox with S2
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The Banach-Tarski Paradox

B\(0, 0, 0) ∼ B

The unit ball minus origin B\(0, 0, 0) is piecewise congruent to B
with respect to isometries of R3.

1 Isolate the “hole”

2 Repeatedly apply rotation φ
around ` to the hole

3 Look only at the image set
of the hole, (0, 0, 0)

4 Apply inverse rotation, φ−1

to fill in the holes
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to fill in the holes
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The Banach-Tarski Paradox

The Banach-Tarski Paradox (Banach and Tarski, 1935)

The solid unit ball centered at the origin in R3 is paradoxical using
isometries on R3.
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