Imagining the Banach-Tarski Paradox

Rachel Levanger

University of North Florida

August 4, 2011

Rachel Levanger Imagining the Banach-Tarski Paradox

The Banach-Tarski Paradox: A solid ball in 3-dimensional space can be split into a finite number of non-overlapping pieces, which can then be put back together in a different way to yield two identical copies of the original ball.

¹Source: Wikipedia

Banach-Tarski in Pop Culture

Futurama June 23, 2011

- **→** → **→**

∃ >

XKCD Oct 11, 2010

< ∃ →

Paradoxical

Let X be an infinite set and suppose $E \subseteq X$. We say that E is *paradoxical* if for some positive integers n, m there are pairwise disjoint subsets $A_1, ..., A_n, B_1, ..., B_m$ of E and corresponding permutations $g_1, ..., g_n, h_1, ..., h_m$ of X such that

$$\bigcup g_i(A_i) = E$$
 and $\bigcup h_k(B_k) = E$.

²The formal definition typically given involves that of a group *G* acting on a set *X*. To simplify the presentation for an audience of undergraduates, the definition was modified to remove references to group actions, and instead uses sets and permutations. It can be shown that if *X* is infinite, then it is paradoxical under the group of all permutations.

Example: Rotations by $\arccos_{\frac{1}{3}} \approx 70.53^{\circ}$

$$\sigma^{\pm 1} = \begin{pmatrix} \frac{1}{3} & \mp \frac{2\sqrt{2}}{3} & 0\\ \pm \frac{2\sqrt{2}}{3} & \frac{1}{3} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Rotation by $\arccos \frac{1}{3}$ around z-axis

$$\tau^{\pm 1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & \mp \frac{2\sqrt{2}}{3} \\ 0 & \pm \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{pmatrix}$$

Rotation by $\arccos \frac{1}{3}$ around x-axis

Why rotate by $\arccos \frac{1}{3}$?

- Angle is an irrational multiple of $\boldsymbol{\pi}$
- Iterations of rotations take points to unique images
- Moreover, products of rotations take points to unique images

³Fixed points of rotations are addressed later on in the presentation. $E \rightarrow E = 20$ 9.0

F is Paradoxical with Respect to Itself

The set *F* of finite (reduced) products of the matrices σ , σ^{-1} , τ , and τ^{-1} is paradoxical.

$$\sigma^{\pm 1} = \begin{pmatrix} \frac{1}{3} & \mp \frac{2\sqrt{2}}{3} & 0\\ \pm \frac{2\sqrt{2}}{3} & \frac{1}{3} & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \tau^{\pm 1} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{3} & \mp \frac{2\sqrt{2}}{3}\\ 0 & \pm \frac{2\sqrt{2}}{3} & \frac{1}{3} \end{pmatrix}$$

Examples: $\sigma \sigma^{-1} = \text{id}$ $\sigma \sigma$

 $\tau \tau \sigma$

A paradoxical set of rotations

in product

 Sort products based on left-most rotation

- Sort products based on left-most rotation in product
- Divide into two groups

- Sort products based on left-most rotation

$P(\sigma)$	$\sigma P(\sigma^{-1})$	$P(\tau)$	$ au P(au^{-1})$
σ	id	τ	id
$\sigma\sigma$	σ^{-1}	ττ	$ au^{-1}_{-1}$
$\sigma\sigma$	σ •	$\tau \tau$	τ
$\sigma \tau$	au	$\tau\sigma$	σ
$\sigma \tau$	au	$\tau\sigma$	σ
$\sigma \tau^{-1}$	$ au^{-1}_{-1}$	$\tau \sigma^{-1}$	σ^{-1}
$\sigma \tau$	$ au^{-1}$	$\tau \sigma^{-1} \dots$	σ^{-1}

- Sort products based on left-most rotation in product
- Divide into two groups
- Apply σ and τ rotations
- Adjacent rotations cancel to yield paradoxical decomposition

$P(\sigma)$	$\sigma P(\sigma^{-1})$	$P(\tau)$	$ au P(au^{-1})$	
σ	id	τ	id	
	_			
$\sigma\sigma$	σ^{-1}	$\tau \tau$	$ au^{-1}$	
$\sigma\sigma$	σ^{-1}	$\tau \tau$	τ^{-1}	
$\sigma \tau$	au	$\tau\sigma$	σ	
$\sigma \tau$	au	$\tau \sigma$	σ	
$\sigma \tau^{-1}$	τ^{-1}	$\tau \sigma^{-1}$	σ^{-1}	
$\sigma\tau^{-1}$	τ^{-1}	$\tau \sigma^{-1}$	σ^{-1}	
$P(\sigma) \cup \sigma P(\sigma^{-1}) = F = P(\tau) \cup \tau P(\tau^{-1})$				

- Sort products based on left-most rotation in product
- Divide into two groups
- Apply σ and τ rotations
- Adjacent rotations cancel to yield paradoxical decomposition

Felix Hausdorff

In 1914, Felix Hausdorff finds a way to leverage the paradox on F to a subset of the hollow sphere, S^2 .

He originally used a different set of rotations, but the idea is similar to what is presented here.

$S^2 \setminus D$ is Paradoxical (*Felix Hausdorff, 1914*)

Let *D* be the set of all fixed points of the hollow sphere S^2 under the rotations in *F*. The set $S^2 \setminus D$ is paradoxical using four pieces.

Fixed points of a rotation: two points of intersection between the axis of rotation and the sphere

How do we create a correspondence between a partition of $S^2 \backslash D$ and F?

- Each image set is countable, since F is
- An uncountable number of these image sets partition $S^2 \setminus D$
- Using the Axiom of Choice, we create a choice set by choosing one representative from each image set in the partition
- The choice set is uncountable and, when rotated by elements of *F*, creates the correspondence we're looking for

▲ 臣 ▶ 臣 • • • • • • •

Rachel Levanger Imagining the Banach-Tarski Paradox

æ

-

-

Piecewise congruent, $A \sim B$

Suppose $A, B \subseteq X$. Then A and B are *piecewise congruent* if for some positive integer *n*, there exists a

- partition of A, $\{A_i : 1 \le i \le n\}$
- partition of B, $\{B_i : 1 \le i \le n\}$
- set of rigid motions $g_1, ..., g_n$ of X

such that $g_i(A_i) = B_i$ for each $1 \le i \le n$. We write that $A \sim B$ if such a correspondence exists.

Piecewise congruence preserves paradoxes

If $A \sim B$ and A is paradoxical, then B is paradoxical.

⁴This definition is also referred to as *equidecomposable.* 🗇 🛶 🖘 🖘 🛬 🗠 👁

"Filling in a Point"

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- ∢ ≣ ▶

- ₹ 🖬 🕨

"Filling in a Point"

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

Create partition set:

< ∃ >
$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

Create partition set:

Isolate the "hole"

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole

$S^1 \sim S^1 \setminus (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole
- Solution Look only at the image set of the hole, $\overline{(1,0)}$

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole
- Solution Look only at the image set of the hole, $\overline{(1,0)}$
- $\ \, {\rm Oly} \ \, {\rm Apply} \ \, {\rm inverse} \ \, {\rm rotation}, \ \, \phi^{-1} \ \,$

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole
- Solution Look only at the image set of the hole, $\overline{(1,0)}$
- $\ \, {\rm Oly} \ \, {\rm Apply} \ \, {\rm inverse} \ \, {\rm rotation}, \ \, \phi^{-1} \ \,$

$S^1 \sim S^1 \setminus (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- Isolate the "hole"
- 2 Repeatedly apply rotation $\phi = \arccos \frac{1}{3}$ to the hole
- Solution Look only at the image set of the hole, $\overline{(1,0)}$
- $\ \, {\rm Oly} \ \, {\rm Apply} \ \, {\rm inverse} \ \, {\rm rotation}, \ \, \phi^{-1} \ \,$

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

• The image set,
$$\overline{(1,0)}$$

$S^1 \sim S^1 ackslash (1,0)$

The unit circle S^1 is piecewise congruent to $S^1 \setminus (1,0)$.

- The image set, $\overline{(1,0)}$
- The rest of the points, $S^1 \setminus \overline{(1,0)}$

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- ∢ ≣ ▶

< ∃ > 3

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

Create partition set:

- ₹ 🖬 🕨

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

Create partition set:

(1) Isolate the "holes," D

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- Isolate the "holes," D
- 2 Repeatedly apply rotation ϕ to the holes

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- Isolate the "holes," D
- 2 Repeatedly apply rotation ϕ to the holes

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- (1) Isolate the "holes," D
- 2 Repeatedly apply rotation ϕ to the holes

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- Isolate the "holes," D
- 2 Repeatedly apply rotation ϕ to the holes

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- (1) Isolate the "holes," D
- 2 Repeatedly apply rotation ϕ to the holes

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- (1) Isolate the "holes," D
- 2 Repeatedly apply rotation ϕ to the holes
- Look only at the image set of the hole, <u>D</u>

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- (1) Isolate the "holes," D
- 2 Repeatedly apply rotation ϕ to the holes
- Look only at the image set of the hole, <u>D</u>
- (Apply inverse rotation, ϕ^{-1}

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- (1) Isolate the "holes," D
- 2 Repeatedly apply rotation ϕ to the holes
- Look only at the image set of the hole, <u>D</u>
- (Apply inverse rotation, ϕ^{-1}

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- (1) Isolate the "holes," D
- 2 Repeatedly apply rotation ϕ to the holes
- Sook only at the image set of the hole, D
- (Apply inverse rotation, ϕ^{-1}

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

Piecewise congruent partition:

• The image set, \overline{D}

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

- The image set, \overline{D}
- The rest of the points, $S^2 ackslash \overline{D}$

$S^2 \sim S^2 \setminus D$

The unit sphere S^2 is piecewise congruent to $S^2 \setminus D$.

Piecewise congruent partition:

- The image set, \overline{D}
- The rest of the points, $S^2 ackslash \overline{D}$

By the Hausdorff Paradox, and since piecewise congruence preserves paradoxical decompositions, S^2 is Paradoxical!

Stefan Banach

Alfred Tarski

→ < ∃→

$B \setminus (0, 0, 0)$ is paradoxical

The unit ball minus the origin $B \setminus (0, 0, 0)$ is paradoxical with respect to rotations in \mathbb{R}^3 .

- Begin with the Hausdorff Paradox decomposition
- Use radial correspondence between S^2 and $B \setminus (0,0,0)$
- Apply the same rotations needed to create paradox with S^2

Rachel Levanger Imagining the Banach-Tarski Paradox

-

æ

$B \setminus (0,0,0) \sim B'$

The unit ball minus origin $B \setminus (0, 0, 0)$ is piecewise congruent to B with respect to isometries of \mathbb{R}^3 .

$B \setminus (0, 0, 0) \sim B$

The unit ball minus origin $B \setminus (0, 0, 0)$ is piecewise congruent to B with respect to isometries of \mathbb{R}^3 .

Isolate the "hole"

$B \setminus (0, 0, 0) \sim B$

The unit ball minus origin $B \setminus (0, 0, 0)$ is piecewise congruent to B with respect to isometries of \mathbb{R}^3 .

- Isolate the "hole"
- Repeatedly apply rotation φ around ℓ to the hole
$B \setminus (0, 0, 0) \sim B$

- Isolate the "hole"

$B \setminus (0, 0, 0) \sim B$

- Isolate the "hole"

$B \setminus (0, 0, 0) \sim B$

- Isolate the "hole"

$B \setminus (0, 0, 0) \sim B$

- Isolate the "hole"
- Solution Look only at the image set of the hole, (0, 0, 0)

$B \setminus (0, 0, 0) \sim B$

- Isolate the "hole"
- Solution Look only at the image set of the hole, $\overline{(0,0,0)}$
- Apply inverse rotation, φ⁻¹ to fill in the holes

The Banach-Tarski Paradox (Banach and Tarski, 1935)

The solid unit ball centered at the origin in \mathbb{R}^3 is paradoxical using isometries on \mathbb{R}^3 .

S. Wagon, *The Banach-Tarski Paradox*, Cambridge Univ. Press, Cambridge, 1993, pp. 1–28.

< ∃ >

- ∢ ⊒ →