Process as Proof: An Interpretation of Dorothea Rockburne's 'Drawing Which Makes Itself' Series
I had the pleasure of seeing Dorothea Rockburne: Drawing Which Makes Itself at MoMA when it was on exhibit. She asked:
“How could drawing be of itself and not about something else?”
What followed was a collection of works made from 1972-1973 that attempt to defy reference to external concepts, meaning, ideas, and objects. The exhibit at MoMA displayed five works from the series: Neighborhood, Nesting, Hartford Installation, Diamond-Parallelogram Overlapping, and Arc. Of these, three (Nesting, Hartford Installation, and Diamond-Parallelogram Overlapping) achieved the goal of remaining entirely self-contained and self-referential, while the other two seemed to leave questions unanswered and miss the mark somewhat.
Rockburne studied mathematics under Max Dehn at Black Mountain College in the 1950s. Beyond obvious geometric shapes and marks, it is not immediately clear from the works to what extent she was exposed to advanced mathematics. A closer investigation suggests that Rockburne was familiar with the concept of constructive proofs in mathematics, and at the very least Dehn’s approach to solving Hilbert’s Third Problem, using notions of scissors-congruence and paper cuts, appears in her work.
Hartford Installation
The first work one encounters is Hartford Installation (1972). A sequence of diagonal lines arranged in a symmetric pattern are interrupted by two dark squares, with fingerprints dotting the corners where each of the diagonals intersect. I asked myself how this drawing might accomplish the task of being self-referential. The only clue I had came from watching the accompanying video and reading the adjacent text: the dark squares were carbon sheets that were used to make the marks on the wall, and so the drawing tool is left as part of the drawing itself.
Diagrams are provided for each of the pieces in the series, and these annotations enable the viewer to appreciate and understand the extent to which Rockburne accomplishes her task. In the diagram we are ultimately given the key to deciphering the rest of the drawings in the series (with the exception of Neighborhood): registration marks denoting the position of the corners of the carbon paper at the time of installation are indicated in pencil directly on the wall, with a 3” mark indicating the longer side of the paper and a 2” mark for the shorter side. Along with a description of how the piece is made, these guides orient the viewer and suddenly the element of time enters into the interpretation, one’s eyes tracking the flipping, turning, and marking of the carbon paper on the wall as determined by the registration marks.
Stepping back and reexamining the work, one starts to see what Rockburne means when she looks to make a drawing that refers only to itself. Not only do we see the finished drawing in this installation, but also the tool used to make the drawing (carbon paper) and traces of the algorithm used to compose the work (registration marks). Aside from possibly an instrument used to score the carbon onto the wall (and the chalk used to mark a diagonal line on the carbon in white), everything needed to create the drawing is present: the drawing is itself a proof of its self-referentiality.
Nesting and Diamond-Parallelogram Overlapping
The adjacent work, Nesting, and one of the works installed on the floor, Diamond-Parallelogram Overlapping (not pictured), have similar feels and constructions. Their diagrams indicate how to read the registration marks and the process by which each drawing was made, though once familiar with the language of these drawings (the registration marks, the orientation of the carbon paper and the white lines drawn on diagonals to indicate where the carbon was drawn), the diagrams are not necessary in understanding the construction of the works.
Like Hartford Installation, everything is contained within the drawings themselves. The viewer is not left questioning any aspect of the works: everything is accounted for, and everything seen has a purpose. We are thus left to think about the arrangements, the composition, the freedom that Rockburne has in these constructions. Through working in a rigid framework (flipping carbon paper, marking, following registration marks), we are made aware of the limitation in possibilities and are left to consider the artist’s choices in making these drawings. A certain appreciation for the work is granted that would not befall the typical gallery viewer who walks through an exhibition with hardly a second glance to each of the works presented.
Neighborhood and Arc
The remaining pieces on display from the Drawings Which Make Themselves series lack this sense of completeness, this notion of proof. In Neighborhood, we see a collection of lines, varying thicknesses and colors, dancing around a piece of vellum tacked on the wall. The diagram indicates the variety of materials used in the drawing, but no mention is given as to how the lines were constructed, according to which rules, or if there was any sort of algorithm at all.
Even the title, Neighborhood, asks us to try and find reference to some concept outside of the drawing in order to tie together these disparate lines. After studying and coming to understand the previous drawings, I was left wondering how this drawing was still considered self-referential.
In Arc, the final work in the show form this series, Rockburne primarily uses the devices of the first three drawings. The only visible difference is a curved line, perfectly circular and reminiscent of construction by straightedge and compass. Studying the drawing itself gives little clue as to how the new mark was made. The carbon paper is folded under and there do not appear to be any circular marks on the paper itself.
Upon reading the diagram, the viewer learns that a piece of wire, cut to length, has been used to make such a mark, but the wire is nowhere to be seen. While it could be argued that the tools used to construct the drawing do not detract from the feeling of self-reference, especially since the carbon paper is still contained in the drawing, the system does not feel as closed. We sense that some sort of trick was played on us or a rule was broken.
Reaction
Many of the write-ups I read about the show were positive but acknowledged that the exhibition suffered from being cold, austere, and too esoteric, the fate of many mathematically-oriented artworks. But these works are not about mathematics, they are about drawing and art. What struck me about these pieces was not how systematic but in how human they are, how they betray the human struggle against system and material.
Fingerprints dot the registration crosses and we are left to imagine a person, perhaps frustrated, holding a sheet of carbon paper to the wall. Their fingers get messy. They struggle to hold it in place and make the requisite markings. Even after the paper is tacked onto the wall with nails, it is left with ripples and refuses to lay flat. By not dictating that the drawing be left in a pristine condition, we are confronted with the fact that it is a drawing and not a concept after all, the prints on the wall serving as a defiance of association with an idealized geometric form.